An intrahelical salt bridge within the trigger site stabilizes the GCN4 leucine zipper.
نویسندگان
چکیده
We previously reported that a helical trigger segment within the GCN4 leucine zipper monomer is indispensable for the formation of its parallel two-stranded coiled coil. Here, we demonstrate that the intrinsic secondary structure of the trigger site is largely stabilized by an intrahelical salt bridge. Removal of this surface salt bridge by a single amino acid mutation induced only minor changes in the backbone structure of the GCN4 leucine zipper dimer as verified by nuclear magnetic resonance. The mutation, however, substantially destabilized the dimeric structure. These findings support the proposed hierarchic folding mechanism of the GCN4 coiled coil in which local helix formation within the trigger segment precedes dimerization.
منابع مشابه
Measurement of interhelical electrostatic interactions in the GCN4 leucine zipper.
The dimerization specificity of the bZIP transcription factors resides in the leucine zipper region. It is commonly assumed that electrostatic interactions between oppositely charged amino acid residues on different helices of the leucine zipper contribute favorably to dimerization specificity. Crystal structures of the GCN4 leucine zipper contain interhelical salt bridges between Glu20 and Lys...
متن کاملMolecular-dynamics simulations of C- and N-terminal peptide derivatives of GCN4-p1 in aqueous solution.
We report the investigation of two 16-residue peptides in aqueous solution by means of molecular-dynamics simulations. The peptides constitute the C- and N-terminal halves of the 33-residue monomer whose dimer constitutes the leucine zipper of the yeast transcriptional activator, denoted GCN4-p1. To examine a hypothesis about coiled-coil formation, in which the C-terminal half contains a helix-...
متن کاملStructural and Functional Analysis of the Dna.binding Domain of Yeast Gcn4 Protein
GCN4, the yeast homologue of the AP-l transcription factor family that includes the Jun and Fos oncoproteins, binds to the promoters of many amino acid biosynthetic genes and activates their transcription. The Cterminal 56 amino acids are sufficient for dimerization and specific binding to the dyad-symmeffic sequence ATGA(C/G)TCAT. GCN4 interacts with non-equivalent and possibly overlapping hal...
متن کاملThe GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex.
The yeast transcriptional activator GCN4 is 1 of over 30 identified eukaryotic proteins containing the basic region leucine zipper (bZIP) DNA-binding motif. We have determined the crystal structure of the GCN4 bZIP element complexed with DNA at 2.9 A resolution. The bZIP dimer is a pair of continuous alpha helices that form a parallel coiled coil over their carboxy-terminal 30 residues and grad...
متن کاملThe retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure.
The question of whether a protein whose natural sequence is inverted adopts a stable fold is still under debate. We have determined the 2. 1-A crystal structure of the retro-GCN4 leucine zipper. In contrast to the two-stranded helical coiled-coil GCN4 leucine zipper, the retro-leucine zipper formed a very stable, parallel four-helix bundle, which now lends itself to further structural and funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 17 شماره
صفحات -
تاریخ انتشار 2001